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Using the Linear Probability Model to Estimate Impacts 
on Binary Outcomes in Randomized Controlled Trials

M any researchers are unsure of whether the linear probability model (LPM) – that is, using the same linear regression 
methodology for a binary outcome that is used for a continuous outcome – is appropriate in the context of calcu-

lating impacts on binary outcomes in a randomized controlled trial (RCT). The purpose of this brief is to provide those 
researchers with a technical explanation for why the LPM is appropriate in that context. For less technical readers, 
we hope that the findings presented at the end of the brief are helpful in selecting an impact estimation method. 

In this brief we examine methodological criticisms of the LPM in general and conclude that these criticisms are not 
relevant to experimental impact analysis. We also point out that the LPM has advantages in terms of implementation and 
interpretation that make it an appealing option for researchers conducting experimental impact analysis. An important 
caveat on these conclusions is that outside of the context of impact analysis, there can be good reasons to avoid using the 
LPM for binary outcomes.1

A. The Linear Probability Model (LPM)

The LPM is simply the application of ordinary least squares 
(OLS) to binary outcomes instead of continuous outcomes. 
Equation 1 provides an example of the LPM in the context of 
experimental impact estimation, where Y is the outcome, T is a 
binary indicator of treatment status, X is a covariate,  is the 
impact on Y of being assigned to the treatment group and  is 
the mean marginal effect of X on Y.2

(1)  

By way of comparison, equation 2 provides an example of 
logistic regression involving the same variables. In equation 2 
the interpretation of  and  are different than in equation 1. 
Whereas in equation 1 these parameters represent mean mar-
ginal effects, in equation 2 they represent a much more difficult 
to interpret parameter called the “log odds ratio”.3 To calculate 
marginal effects for a logistic regression, we must take the 
derivative of equation 2 with respect to the variable of interest 
(either T or X). Then, to calculate mean marginal effects, we 
must calculate that derivative for every data point and then 
calculate the mean of those derivatives.4

(2)  

We illustrate how these two different approaches model the rela-
tionship between a binary outcome and covariates using artifi-
cially generated data (described in the appendix). In Figure 1 we 
present a scatter-plot of the artificial data (X is on the horizontal 
axis and represents knowledge about sexually transmitted infec-
tions (STIs); Y is on the vertical axis and represents whether or 
not a youth had unprotected sex or not; T is illustrated via color 
coding – orange denotes T=1, purple denotes T=0). In Figure 2, 
we add to that scatter plot predicted probabilities from a logistic 
regression (predicted probabilities are denoted by the symbol ^). 
In figure 3, we show predicted probabilities from the LPM. 

In both Figures 2 and 3 the impact of treatment (that is, the 
marginal effect of T) for a particular value of X is the vertical 
distance between the purple and orange prediction curves/lines. 
An obvious difference between Figures 2 and 3 is that in Figure 
2 the impact (marginal effect of T) varies with respect to X, 
while in Figure 3 the impact is constant with respect to X. What 
may not be obvious from simply looking at the figures, how-
ever, is that the average vertical distance between these curves 
(that is, the mean marginal effect) is the same in both Figures 2 
and 3. That is, both logistic regression and the LPM yield the 
same expected average impact estimate. We will examine this 
in more detail in section C. 
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Figure 1. Scatterplot of Artificial Data

Note: The data points in the figure are color coded by treatment status. The 
treatment group is represented by the color orange and the control group is 
represented by the color purple. 

Figure 2. Predicted Probabilities Using Logistic Regression

Note: The data points in the figure are color coded by treatment status. The 
treatment group is represented by the color orange and the control group is 
represented by the color purple. Predicted probabilities are denoted by the 
symbol ^ and use the same color-coding.

B. Textbook Advantages and Disadvantages  
of the LPM for Binary Outcomes

Textbooks (for example, Greene 1993) describe the advantages and 
disadvantages of the LPM for general use. The main advantage of 

Figure 3. Predicted Probabilities Using the LPM

Note: The data points in the figure are color coded by treatment status. The 
treatment group is represented by the color orange and the control group is rep-
resented by the color purple. Predicted probabilities are denoted by the symbol 
^ and use the same color-coding.

the LPM is that the parameter estimates can be directly interpreted 
as the “mean marginal effect” of covariates on the outcome. For 
example,  from Equation 1 is the difference between the treat-
ment and control groups in the prevalence rate of the outcome (the 
mean vertical distance between the purple and orange prediction 
^ lines in Figure 3). This result can be used in statements of the 
impact of an intervention that can be easily understood by a broad 
audience. For example: “Youth in the treatment group reported a 
sexual initiation rate 7 percentage points lower than youth in the 
control group.” By contrast,  from equation 2 is a log odds ratio, 
not the mean marginal effect. Consequently  from equation 2 
does not correspond to the mean vertical distance between the 
purple and orange curves in Figure 2. 

The main disadvantage of the LPM that is described in textbooks 
is that the true relationship between a binary outcome and a 
continuous explanatory variable is inherently nonlinear.5 This 
means that the functional form of the LPM is generally not 
correctly specified, which can lead to biased estimates of some 
parameters of interest. For example, estimates of the marginal 
effect of X for a specific value of X are often biased. This is 
because the LPM assumes a constant marginal effect of X for 
all values of X, but the marginal effect of X almost always varies 
with respect to X. In extreme cases this misspecification of the 
functional form can even lead to predicted probabilities that 
are less than 0 or greater than 1 (see Figure 3), or in percentage 
terms, less than 0 or greater than 100 percent.  
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C. Performance of LPM In Estimating  
Experimental Impacts

It turns out that the textbook disadvantages of the LPM described 
above do not apply to the context of estimating experimental 
impacts – the LPM yields estimates of experimental impacts 
that are just as accurate as those estimated by logistic regression. 
That is, in the context of an impact evaluation, the parameter of 
interest is , not , and the LPM is an appropriate analytic 
procedure for estimating . Below we explain why this is the 
case and use simulations to illustrate the point.  

The main reason that the LPM works so well to estimate experi-
mental impacts is that treatment status is a binary variable (not 
a continuous variable, which would be subject to the potential 
bias described above).  This means that the functional form 
concerns about LPM do not apply to estimating impacts, since 
all that is required is to estimate two prevalence rates—one for 
the treatment group and one for the control group (as opposed to 
estimating a different prevalence rate for every unique value of 
a continuous variable). 

A second reason that the LPM provides accurate estimates of 
experimental impacts is that any other covariates included in 
the impact model are uncorrelated with treatment status (thanks 
to random assignment), which means that the impact estimate 
is unbiased regardless of whether the correct functional form is 
used to adjust for other (possibly continuous) covariates.6

We illustrate the strong performance of the LPM relative to logistic 
regression using Monte Carlo simulations. In each simulation, 
we create a binary outcome (Y), a continuous baseline covariate 
(X), and a treatment indicator variable (T). The prevalence rates 
of Y and the impact of T vary across simulations; the sample size 
for each of the 10,000 replications is set at 100. For expository 
purposes, to align with the previous presentations in Figures 1-3, Y 
can represent whether or not a sample member has had unprotected 
sex, and X can represent knowledge about STIs. We examine prev-
alence rates of 50 percent and 80 percent. When the prevalence rate 
of Y is 50 percent, we examine impacts of 0, 10, and 25 percentage 
points. When the prevalence rate of Y is 80 percent, we examine 
impacts of 0, 5, and 15 percentage points. For all simulations Y is 
negatively correlated with X (as in Figures 2 and 3). Additional 
details of these simulations are included in the appendix. 

Simulation findings are reported in Table 1. There are  
four key findings in this table:

1. Logistic regression cannot always estimate an impact in 
cases where the LPM can. Logistic regression will fail to 
estimate an impact if treatment status perfectly predicts 
the outcome (for example, the outcome is equal to 1 for 

everyone in the treatment group). This can happen when 
the sample size is small and/or when the prevalence rate of 
the outcome is very high or low.7 For example, when the 
prevalence rate is 80 percent and the true impact is 15 per-
centage points, an impact cannot be estimated using logistic 
regression for about 8 percent of our Monte Carlo replica-
tions. An implication of this failure is that in situations where 
the sample size is small and/or the prevalence rate of the 
outcomes is very high or low yet it is possible to estimate an 
impact using logistic regression, those impacts (and accom-
panying standard errors) will be biased (see below). 

2. The LPM yields unbiased impact estimates in all scenarios 
examined; logistic regression is biased in the scenario 
where it sometimes fails to estimate an impact. For every 
combination of outcome prevalence rate and impact mag-
nitude, the expected value of the impacts estimated by the 
LPM equals the true impact (see the two columns under the 
heading “Mean of Monte Carlo Impact Estimates”). Logistic 
regression generally yields an unbiased impact, but in the 
situation where logistic regression is susceptible to failure, 
the cases where it does not fail yield an average impact that 
is not equal to the true impact (an impact of 14.5 instead of 
15 in the last row of Table 1).  

3. Impacts estimated using logistic regression are slightly 
more precise. The “true” standard error of impacts estimated 
by each method is reported under the heading “Standard 
Deviation of Monte Carlo Impact Estimates.” The standard 
errors for impacts estimated using logistic regression are 
slightly smaller than those estimated using the LPM.8

4. Standard errors estimated using the LPM are correct, stan-
dard errors estimated for logistic regression are sometimes 
too small. Correctly estimating standard errors is necessary for 
constructing accurate confidence intervals and for statistical 
hypothesis testing. We find that the estimated standard errors for 
impacts estimated by the LPM (“Mean of Monte Carlo Standard 
Error Estimates”) are essentially the same as the true standard 
errors (“Standard Deviation of Monte Carlo Impact Estimates”). 
For logistic regression, the estimated standard errors are a little 
too small for all six scenarios reported in Table 1.9

We report additional, more technically nuanced findings from 
these simulations in the appendix.  

Conclusions

Relative to estimating impacts for RCTs using logistic regression, 
the LPM has two main advantages and no disadvantages. Its 
main advantages are ease of implementation and interpretation. 
Specifically, the LPM can estimate impacts in cases where logistic 
regression cannot and, unlike logistic regression, the parameter 
estimates from the LPM can be directly interpreted as the impact 
of the intervention on the prevalence rate of the outcome. The 
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textbook concern about functional form misspecification for the 
LPM does not apply to impact estimation since treatment status is 
a binary variable (meaning that functional form is irrelevant).

Table 1. Monte Carlo Comparison of LPM and Logistic Regression

Outcome 
Prevalence 
Rate

True 
Percentage 
Point 
Impact

Mean of Monte Carlo 
Impact Estimates

Standard Deviation of 
Monte Carlo Impact 
Estimates

Mean of Monte 
Carlo Standard Error 
Estimates

Percentage of Monte 
Carlo Estimates That 
Failed

LPM Logistic LPM Logistic LPM Logistic LPM Logistic

50 percent 0 0.0 0.0 8.3 8.2 8.3 8.0 0 0

50 percent 10 10.0 9.9 8.6 8.5 8.5 8.3 0 0

50 percent 25 25.0 24.9 8.4 8.4 8.4 8.1 0 0

80 percent 0 0.0 0.0 7.0 6.8 7.0 6.6 0 0

80 percent 5 4.9 4.9 6.8 6.7 6.7 6.4 0 0

80 percent 15 14.9 14.5 6.0 5.8 5.9 5.6 0 8.1
Source: Monte Carlo experiments, 10,000 replications, each with sample size of 100. See appendix for detailed description.

Endnotes
1 This brief focuses on the use of LPM for binary outcomes for RCTs 
but the conclusions also apply to studies that use a quasi-experimental 
design (QED) to estimate the impact of a binary treatment variable on a 
binary outcome.
2 The “marginal effect” of X on Y is the effect on Y of a small change 
in X (the derivative of Y with respect to X) and can be calculated for 
every individual in the data. The “mean marginal effect” is the average 
of all the individual marginal effects. With a linear regression specifica-
tion the marginal effect is estimated to be the same for every individual. 
With a non-linear regression specification, every individual can have a 
different marginal effect. For example, if the regression specification is 
Y = b*X, then the marginal effect is just b (which is the same for every 
individual). But if the regression specification is Y = b*X2, then (by 
calculus) the marginal effect is 2*b*X, which means that the marginal 
effect depends on X and therefore varies across individuals. 
3 For example, in the case of equation (2), the log odds ratio  is 
equal to log((Prob(Y=1 | T=1)/Prob(Y=0 | T=1)) / (prob(Y=1 | T=0)/
prob(Y=0 | T=0))). This footnote highlights the complexity involved in 
interpreting logistic regression, which is why we suggest using the LPM.
4 Some statistical software will calculate mean marginal effects from a 
logistic regression “automatically,” but it is important to carefully read the 
manual to ensure that the software is actually calculating the mean mar-
ginal effect rather than the marginal effect at the mean and to make sure 
that the standard error of the mean marginal effect is calculated correctly. It 
is also important to verify that the software is taking into account whether 
the mean marginal effect is being calculated for a continuous variable or 
a discrete variable. This footnote highlights the complexity involved in 
interpreting logistic regression, which is why we suggest using the LPM.
5 Another issue with the LPM is conditional heteroskedasticity. If 
standard error estimates are not adjusted for conditional heteroske-
dasticity they can be too large in cases where the sample is not evenly 
split between the treatment and control groups. Standard errors can be 
adjusted for conditional heteroskedasticity using the Huber (1967)-
White (1980) correction. 

6 Functional form also does not matter in the context of a QED with a 
matched comparison group that is equivalent to the treatment group 
with respect to observed characteristics. 
7 This issue affects logistic regression because logistic regression is 
estimated using maximum likelihood, and the maximum likelihood 
algorithm fails to converge in this situation. It does not affect the LPM 
because the LPM does not rely on maximum likelihood estimation. 
8 We repeated the Monte Carlo experiment several times to confirm that 
the difference between the LPM and logistic regression in the variance 
of the impact is real. 
9 We repeated this experiment without covariate adjustment and found 
that the estimated standard error for the logistic regression impact was 
correct in that case, suggesting that logistic regression may overstate the 
benefit of covariate adjustment. In all scenarios, we estimated standard 
errors for logistic regression impacts using the delta method, which is 
also the approach used by the software package STATA. Some readers 
may be confused that covariate adjustment reduces the standard error of 
the impact when estimated by logistic regression since adding covariates 
has been shown to increase the standard errors of coefficients in a logis-
tic regression. Note, however, that we are not focusing on the standard 
error of the coefficient on treatment status, but rather the standard error 
for the mean marginal effect of treatment status. See Schochet (2013) for 
a thorough discussion of the differences between these two parameters 
and the standard errors of estimates of these parameters.
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TECHNICAL APPENDIX:  
This technical appendix describes the data generating process used to create Figures 1–3 and provides a more detailed description 
of the simulations that were summarized in Table 1.

A. Data Generating Process Used to Create Figures 1-3

The data used to create Figures 1–3 consist of 100 observations, a normally distributed random variable e, a normally distributed 
random variable x, a latent dependent variable ylatent that is a function of x and e, a dichotomous variable T, and a dichotomous 
outcome variable y that is a function of T and ylatent, such that the proportion of observations where y equals 1 is p when T = 0 
and p+impact when T = 1 (for figure 1 p = 0.5 and impact = -0.2). These variables and the relationships between them are shown in 
Equations 1–4 (F is the cumulative density function for the normal distribution and z is the outcome variable before the impact is added). 

(1)

(2)

(3) 

(4)

B. Simulations Used to Create Table 1

The findings shown in Table 1 come from a Monte Carlo simulation in which impacts were calculated using the LPM and logistic regres-
sion on 10,000 data sets. Each data set had 100 observations and was generated using the same process that was used to generate figures 
1-3 (described above), but with different values (see Table 1) of the outcome prevalence rate (p) and the true percentage point impact 
(impact). For logistic regression, the impact was calculated as the mean marginal effect of T on y from a logistic regression of y on T and 
x. For the LPM, the impact was calculated as the coefficient estimate on T in an ordinary least squares regression of y on T and x. 

To assess the sensitivity of our main finding – that the LPM generates unbiased impact and standard error estimates – we ran addi-
tional simulations in which we varied different aspects of the data generating process described above. Specifically, we varied the 
distribution of x (normal, Student’s t with 3 degrees of freedom, or dichotomous), we varied sample size (10, 30 or 100), and we 
varied the prevalence rate (50 percent, 70 percent, 80 percent, 90 percent, and 95 percent) and impact magnitude (a range from 0 to 25 
percentage points). Our main findings are robust to these sensitivity analyses – the LPM generates unbiased impact and standard error 
estimates in all scenarios examined. 
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