Finding Credible Program Impacts

June 23, 2011

Webinar for OAH & ACYF Teenage Pregnancy Prevention Grantees

John Deke

Striving for the "Gold Standard"

- Studies based on RANDOM ASSIGNMENT can produce highly credible, persuasive evidence of a program's effectiveness
- Not automatic both program implementation and evaluation implementation are keys to success, and both types of implementation rely on program staff
- Two key objectives:
 - Program implementation: maintain the contrast between the treatment and control groups
 - <u>Evaluation implementation</u>: preserve the integrity of random assignment

Maintaining the Contrast

Where Impacts Come From

- An impact is the difference in average outcome between the treatment and control groups
- A difference in outcomes results from a difference in experiences
- No difference in experiences, no impact

Impacts Example

MATHEMATICA Policy Research, Inc.

Impacts Example: +Control Group

Maintaining the Contrast

- Program must be implemented as intended
- Students in the treatment group must actually participate
- Students in the control group must NOT participate in the program being studied

Once Randomized, Always Analyzed

- Students in the treatment group who do not participate ("no-shows") cannot just be "thrown out"
- Same for students in the control group who <u>do</u> participate ("cross-overs")

Preserving the Integrity of Random Assignment

Perspective of a Skeptic

- Important research will be carefully scrutinized
- Must convince the "reasonable skeptic"
- The burden of proof rests with the evaluator, not the skeptic

Threats to Integrity

- <u>Assignment</u> becomes purposeful, not random
- Missing data, for non-random reasons

Assignment Must be Random

- If <u>assignment to treatment</u> is not random, then we do not know that the treatment and control groups are identical
- Anything that changes who is in the treatment and control groups could introduce bias
- HOWEVER <u>selection for the study</u> does not have to be random

Purposeful Assignment: Example

- Schools are selected for the study
- Schools are RANDOMLY ASSIGNED to treatment and control groups
- Principals select one section of a health class in each school to participate in the study

Preventing Purposeful Assignment

- Limit changes in teacher/student assignments after randomization (as feasible)
 - Conduct random assignment as late as possible
- Understand special issues before randomization
 - example, some teachers might be excluded from the study
- Monitor changes in teaching assignments and student rosters between random assignment and follow-up data collection

- Schools are selected for the study
- Principals select one section of a health class in each school to participate in the study
- Schools are RANDOMLY ASSIGNED to treatment and control groups

- Equivalence of the treatment and control groups is the key advantage of random assignment
- This equivalence can be lost if outcome data are not available for all individuals in the study
- Analogous to purposeful assignment individuals are selectively removing themselves from the study

Nonrandom Missing Data: Example

- Random assignment of schools
- Some schools, teachers, or students dislike the program, stop using/attending
- Researchers halt data collection
 - in the schools or classrooms that stopped using the program, OR
 - for students who stopped using/attending the program

Avoiding Missing Data

- Once Randomized, Always Analyzed
- Data needed for all schools, teachers, or students that were randomly assigned
- Analyze data using <u>original</u> treatment assignment

Fixing the Example

- Random assignment of schools
- Some schools, teachers, or students dislike the program, stop using/attending
- Researchers <u>continue</u> data collection for all schools, classrooms, and students <u>regardless of their</u> <u>program use/attendance</u>
- Calculate intent-to-treat (ITT) impact

Finding Credible Program Impacts

There must be an impact to find

- Implement program as intended
- High participation rate for the treatment group
- Low program exposure for the control group
- That impact must be credible
 - Random, not purposeful, assignment/selection
 - Once randomized, always analyzed

For More Information

TPP Eval TA

- TPPEvalTA@mathematica-mpr.com
- 1-866-336-3880

